A Note on the Identification of "Insoluble" **Sulphates**

K. F. G. Hosking, M.Sc., Ph.D., A.M.I.M.M. and J. P. R. Polkinghorne, A.M.I.M.M.

Abstract

THE writers, having demonstrated that the mercuric nitrate test for insoluble sulphates — as described by Feigl — is of little use. describe a modified procedure which enables differentiation to be made between the sulphates of Ca, Sr, Ba and Pb.

Feigl (1954, p.369) makes the following remarks:—" A general test for slightly soluble sulphates (i.e., those of Ca, Sr, Ba and Pb) is to treat a little of the material on a watch glass with a drop of an acid solution of mercuric nitrate [10 g. Hg(NO₃)₂ plus 1 ml. concentrated HNO3, in 100 ml. water]. Yellow basic mercuric sulphate is formed. CaSO, and PbSO, respond at room temperature; SrSO and BaSO, must be warmed to develop the yellow. If sulphides and halogen compounds are absent, the test is decisive. The test material must be colourless; otherwise the yellow cannot be seen."

When the writers repeated this test they found that only CaSO₄ developed a yellow tinge at room temperature (c. 60° F.), but, on warming, PbSO, and SrSO, both became slightly yellow, whilst BaSO, remained white.

However, a number of experiments led to the development of the following modified test which has considerably more diagnostic value than that which was claimed (erroneously) for the original:-

Add a little mercuric nitrate solution (prepared as for the original test) to the "insoluble" sulphate under examination. Then add double the volume of water and swirl the mixture.

CaSO, becomes strongly yellow immediately, whilst SrSO, develops a distinct yellow tinge after one or two minutes: PbSO, may show a trace of yellow and BaSO4 remains white.

Heat the mixture gently for a few seconds over a small

The CaSO, yellow may intensify somewhat and that of SrSO₄, certainly does so: PbSO₄ develops a yellow hue whose intensity metabor that of ScSO₄ flame. ity matches that of SrSO₄, whilst BaSO₄ remains white, or at the most, assumes a very slight yellowish tinge.

Gypsum (and anhydrite) barite, celestite and anglesite behave in precisely the same way as their laboratory equivalents. although gypsum (CaSO₄. 2H₂O) is somewhat more reactive than

the less soluble anhydrite (CaSO4).

It is, therefore, an easy matter to differentiate between the "insoluble" sulphates by employing this test alone.

A number of excellent confirmatory tests for these sulphates is described by Feigl (1954, pp.369-370) and also two which enable differentiation to be made between gypsum and anhydrite (pp.414 and 447). The writers, often employ, in addition, the potassium iodide test—which is not mentioned by Feigl—to confirm Pb in PbSO. This simply involves adding a small crystal of KI and a few drops of 5N, acetic acid to the substance under test. The presence of lead is indicated by the immediate appearance of an intensely yellow precipitate of PbI₂.

REFERENCES

FEIGL, F. Spot tests, vol. 1 (London: Elsevier Publishing Co., Ltd., 1954).

Analysis

Analysis of the creature known as Woman — as seen through the eyes of a chemist.

Symbol:

WOE.

Atomic Weight: 120 lbs.

Occurrence: Found wherever man exists.

Physical Properties:

1. Boils at nothing, and freezes at any moment.

Melts when properly treated; very bitter when not well used.

Chemical Properties:

 Possesses a great affinity for Gold, Silver, Platinum and Precious Stones.

Violent reaction if left alone.

- 3. Liberates secrets when dipped in conversation.
- 4. Turns green when placed beside a better specimen.5. Highly explosive.

6. Highly ornamental.

Uses:

As a tonic for low spirits.

Great equaliser of the distribution of wealth.

Probably the most effective Income Reducing Agent ever known.