Bead Tests

K. F. G. HOSKING, M.Sc., Ph.D., M.I.M.M.

Synopsis

IN this review — which is written to fill an obvious gap in the literature — the following tests are described and their merits appraised:—Classical bead tests: Feigl's bead test for gold: tests depending on the examination of beads under ultraviolet light.

Bead tests are of unquestionable value to the mineralogist, yet $_{10}$ text book, nor paper — so far as the writer is aware — deals comprehensively with them. This fact justifies this review.

Classical bead tests.

Classical bead tests depend on the fact that when small quantities of certain elements or their compounds are fused with an appropriate flux — borax, microcosmic salt or soda — under oxidising and/or reducing conditions, beads are obtained, either of characteristic colours, or containing characteristic inclusions.

In practice, a bead of flux is built up in a platinum wire loop or on a magnesia rod and is dipped, whilst still hot, into a very small quantity of the powdered test-substance. The mixture is then fused in either the flame of a bunsen burner or in the blowpiped flame of an alcohol, or similar lamp.

Whether the fusions are conducted in the oxidising or in the reducing zone of the flame, the colour of the bead is noted when it is hot and after it has cooled, as these colours often differ, and both are of diagnostic value.

The chemical bases of these tests are as follows (see Vogel, A. I., 1947, 112-114):—

- 1. The oxides of several elements form coloured metaborates and orthophosphates when they or salts from which they can be derived are fused under oxidising conditions with borax and microcosmic salt respectively.
- 2. In the reducing flame metaborates and orthophosphates of the elements under test are probably formed initially, but may subsequently be reduced to other compounds or to elements, which impart both to the hot and cold beads colours which often differ from those appearing under oxidising conditions.

Silica, which is liberated when certain silicates are strongly salt in the oxidising zone of the congly 3. Silica, which is not the salt in the oxidising zone of the flame, discolve in the melt and appears in it as a "electric strongly than the salt in the salt in the oxidising zone of the flame, and appears in it as a "electric strongly strongly in the melt and appears in it as a "electric strongly strongly in the salt in the oxidising zone of the flame, and appears in it as a "electric strongly s heated with microcosmic sait in does not dissolve in the melt and appears in it as a "skeleton" skeleton of silicates. A typical reaction is of the This aids the detection of silicates. A typical reaction is of the type

Casio + NaPO, = NaCaPO, + SiO. $CaSiO_3 + NaPO_3 = NaCaPO_4 + SiO_2$

As certain silicates dissolve completely in fused microcosmic not definite proof of the above As certain sincates dissorte completely in tused microcosmic salt, the absence of a skeleton is *not* definite proof of the absence of

4. When a bead of sodium carbonate is, after moistening, dipped first into a little powdered potassium nitrate and then into a small quantity of powdered manganese compound and the whole is small quantity of powdered managements and the whole is heated in the oxidising flame, a green bead of sodium manganate is

 $MnO + Na_2CO_3 + O_2 = Na_2MnO_4 + CO_8$

Chromium compounds similarly treated result in the produc. tion of vellow sodium chromate:- $2Cr_2O_3 + 2Na_2CO_3 + 3O_2 = 4Na_2CrO_4 + 4CO_6$

The general course of the reactions involved in the production of characteristically coloured borax and microcosmic salt beads may be appreciated by considering the reactions - briefly outlined below — between a copper salt and the above fluxes under various conditions.

1. Borax Bead.

(i) Oxidising conditions.

Heat (a) $Na_2B_1O_7$. $10H_2O_2 - 2NaBO_2 + B_2O_3 + 10H_2O_3$ Boric. Sodium. Metaborate. Anhydride. Colourless.

The Heat product (b) Copper salt — > CuO. is pale (c) $CuO + NaBO_2 \longrightarrow NaCuBO_3$. green (orthoborate) hot and (A probable reaction.) hlue-(d) $CuO + B_2O_3 \longrightarrow Cu(BO_2)_2$ green (e) $Cu(BO_2)_2 + 2NaBO_2 \longrightarrow Na_2[Cu(BO_2)_1].$) cold. ! (A possible reaction.)

(ii) Reducing conditions.

The product (a) $2Cu(BO_2)_2 + 4NaBO_2 + C \longrightarrow Cu_2(BO_2)_2 + Na_2B_4O_7 + CO$. is pale. green hot and (Colourless) Note:—The carbon is derived from the flame. red and opaque (b) $2Cu(BO_2)_2 + 4NaBO_2 + 2C > 2Cu + 2Na_2B_4O_7 + 4CO.$) cóld.

Microcosmic Salt Bead. Oxidising conditions.

Heat	The
(a) $Na(NH_4)HPO_4 \longrightarrow NaPO_3 + H_2O + NH_3$	product
Microcosmic Metaphosphate.	(is dark-
Salt. (Colourless.)	green
(b) NaPO ₃ + CuO — > NaCuPO ₄ .	hot and
Ortnopnosphate.	blue
(Coloured.)	cold.

Read tests of the type under review are of great value to the mineralogist because they are both simple and rapid and only a very limited amount of apparatus and a small number of reagents are needed. Furthermore, a considerable number of economically important elements can be readily detected by their use, as a glance at Table 1 will indicate. They are normally used in conjunction with charcoal block and other "blowpipe tests". A difficulty arises when testing a sample containing two or more elements which are capable of producing coloured beads with the fluxes noted above. Either the colour of the bead will be so modified that it is not characteristic of any of the elements present, or the colour due to one element will completely mask those due to the others. Thus, a borax bead prepared from a sample containing 5 or 6 times as much nickel as cobalt will, nevertheless, be blue. Table 2 indicates some of the bead colours encountered when more than one "colour-producing" element is present and clearly demonstrates the short-comings of the method under such circumstances.

On the other hand, the addition of substances to a given bead sometimes assists identification. Thus, the presence of manganese in a microcosmic salt bead is confirmed if on dipping the *hot* bead into powdered potassium nitrate a purple, swollen mass develops. When a tungsten compound is fused with microcosmic salt in the reducing zone a blue glass — or bluish-red one if iron is present — develops. The intensity of this colour may be considerably increased by re-heating the bead together with a small fragment of tin foil in the reducing zone.

Cation	Minimum amount detectable (gammas)	
Cl	Borax	Microcosmic Salt
Chromium — Oxid. flame (O.F.)	1.8	1.8
Manganese — O.F. Nickel — O.F.	18.8	
Copalt - O B	5.0	7.5
Copper. O =	0.5	1.0
Copper - C.F.	24.8	24.8
Copper + SnCl ₂ — Red. flame	1.9	9.9

TABLE 1.

A Summary of the Classical Bead Tests.

(After Davison, E. H. Field tests for minerals. Chapman and Hall, London, 1937, 10.)

BORAX BEADS

	Oxidisin	Oxidising Flame		Reducing Flame	
Metal	Hot	Cold	Hot	Cold	
Copper Cobalt Chromium	Pale green Blue Orange	Blue-green Blue Yellow- green	Pale green Blue Green	Red Blue Green	
Cerium	Yellow	Pale yellow		_	
Iron Manganese Nickel Titanium	Yellow Violet Violet Pale	Colourless Violet Red- brown	Pale green Colourless Grey	Grey	
Vanadium	yellow Yellow	Colourless Pale yellow	Green Green	Violet Green Pale green	
Uranium	Orange	Yellow	Oreen	1 arc green	

MICROCOSMIC SALT

Oxidising Flame			Reducing Flame	
Metal	Hot	Cold	Hot	Cold
Copper Cobalt Chromium Cerium Iron Manganese Molybdenum Nickel Titanium Tungstan Vanadium Uranium	Dark green Blue Green Yellow Yellow to red Violet Yellow- green Brown- red Yellow Yellow Yellow Yellow	Blue Blue Green Colourless Yellow to colourless Violet Colourless Reddish- yellow Colourless Colourless Pale yellow Yellow- green	Green Blue Green Colourless Yellow- green Colourless Green Brown- red Yellow Blue Green Green	Red Blue Green Colourless Colourless Green Reddish- yellow Violet Blue Green Green

Bead Tests

TABLE 2.

COLOURS WHICH BORAX BEADS MAY ASSUME WHEN MORE THAN ONE "COLOUR-PRODUCING" ELEMENT IS PRESENT

	Oxidising Flame		Reducing Flame	
Elements	Hot	Cold	Hot	Cold
Mn and Fe Mn, Fe and Co Mn, Fe, Co and Ni Fe, Co and a little Ni Co and much Ni Fe and Co Fe and Cu Fe and Ni	Violet to blood-red Plum colour Green Yellowish-green Violet-brown Green	Brownish-	Yellow Bluish- green Blue- green Greenish- blue Blue	Bottle- green Blue Green Blue
		quantities		İ

Augusti and Pascalino (1937, 166) report the following sensitivities of borax and microcosmic salt bead tests and conclude that only cobalt, chromium and copper (in the presence of SnCl₂) can be detected in the small amounts which interest the micro-chemist.

Feigl's bead test for gold.

In order to detect gold in solution Feigl (1947, 101) evaporates a little of the liquid in a capillary tube and then by fusion converts the tube into a glass bead. Depending on the quantity of gold present, either a yellow metallic, or a purple-red filament is seen in the centre of the bead which acts as a lens. Sometimes the writer (Hosking, Unpublished studies.) has found that the whole bead is coloured a faint purple-red.

Tests depending on the examination of beads under ultraviolet light. Groves (1951, 250-251) describes in considerable detail a very sensitive fluorescent bead test for the identification of uranium in certain minerals (e.g., uraninite and carnotite) which do not fluoresce under ultraviolet light. Pure sodium fluoride is fused in a platinum loop and then a little of the finely powdered test substance is introduced and strongly heated in the bead for 2 or 3 minutes.

The cold bead is then examined under ultraviolet light prefer. The cold bead is then examined ably of long wave-length — when the presence of uranium is bright lemon-yellow or yellow-green fluorage. ably of long wave-length indicated by a bright lemon-yellow or yellow-green fluorescence in refractory uranium is Rare-earths, not infrequently present in refractory uranium species, the fluorescence, and "... lime interferorescences." Rare-earths, not intrequently present in retractory uranium species, tend to quench the fluorescence, and "...lime interferes species, seriously (less so Si, Ti, Fe and SO₄); as little as 6 per cent of extinguishes the fluorescence of the fluor seriously (less so 51, 11, 10 and 50 per cent, of calcium fluoride in the bead completely extinguishes the fluoresc. ence". (Groves, op. cit., 251.) Niobium-bearing minerals which do when treated in the above were not contain uranium give, when treated in the above way, a bead dull-vellow Groves' uranium to a bead which fluoresces a pale, dull-yellow. Groves' uranium test suffers which fluoresces a paic, dult joint. Standard test suffers from the further disadvantage in that sodium fluoride, which is generally regarded as the most suitable flux for preparing a uranium bead which will fluoresce when excited by ultraviolet light, has a high melting-point (980° C.) which is difficult to obtain under field

TABLE 3.

A SUMMARY OF SMITH'S FLUORESCENT BEAD TESTS. (After Smith, O. C., 1953, 60.)

Borax beads examined under short-wave ultraviolet light, 1. Uranium ... Oxidising flame Greenish. CopperReducing flame Pinkish.

Microcosmic salt beads examined under short-wave ultraviolet 2. light.

Uranium ... Reducing flame Greenish. Copper , , Reddish. Pinkish. Tungsten ... Note:—No other borax or microcosmic salt beads respond.

Sodium fluoride and lithium fluoride beads prepared in the 3. oxidising flame and examined under both long-and short-wave ultraviolet light.

Sodium fluoride beads.

Long wave. Short wave. Bismuth ...Blue-white Yellow. Columbium .Blue-white None. Titanium ...Light green None. Tungsten ... Light bluish-yellow None. Uranium ... Brilliant lemon-yellow ... Bright yellow.

(ii) Lithium fluoride beads.

Dark orange. Bismuth ...Orange None. Columbium .None None. Titanium ... Dark green None. Tungsten ...Light blue Blue-green. Uranium ... Brilliant blue

Smith (1953, 60) has extended the fluorescent bead test Smith (1703), the identification of several other elements and his technique to the identification of several other elements and his technique to the identification of several other elements and his tests are summarised in Table 3. The writer has found (Hosking. tests are summarises.) that most of these are only reliable for Unpublished studies.) that most of these are only reliable for Unpublished states, the fairly pure, simple substances, and is of the identifying elements in fairly pure work is peaseent. identifying elements in the party party, simple substances, and is of the opinion that considerably more work is necessary in order to evaluopinion mat consider the degree of interference due to the presence of varying at the degree of other elements before the true value. ate the degree of varying amounts of other elements before the true value of these tests to the mineralogist can be assessed.

REFERENCES

AUGUSTI, S. and PASCALINO, V. Sulla sensibilita delle perle al borace ed al sal di fosforo per il reconoscimento di alcuni cationi. Mikrochemie, 1937, 22, 159-167.

FEIGL, F. Qualitative analysis by spot tests. Translated by R. E. Oesper. Elsevier Publ. Co., Inc., N. York, 1947.

GROVES, A. W. Silicate analysis. Allen and Unwin, Ltd., 1951.

SMITH, O. C. Identification and qualitative chemical analysis of minerals (2nd. ed.). Van Nostrand Co., Inc., N. York, 1933.

VOGEL, A. I., A textbook of qualitative chemical analysis. Longmans Green and Co., 1947.

A real Cornish welcome to all Motorists

ESPECIALLY

AUSTIN

MORRIS

AND B.M.C.

Owners

"The reliable people for Sales and Service"

ILLIAMSONS MOTORS

CAMBORNE

he Church

Phone 2066/7